Chapter 3: Q20E (page 173)
20.Find \(\frac{{dy}}{{dx}}\) by implicit differentiation.
20. \(xy = \sqrt {{x^2} + {y^2}} \)
Short Answer
The value is \(\frac{{dy}}{{dx}} = \frac{{x - y\sqrt {{x^2} + {y^2}} }}{{x\sqrt {{x^2} + {y^2}} - y}}\).
Chapter 3: Q20E (page 173)
20.Find \(\frac{{dy}}{{dx}}\) by implicit differentiation.
20. \(xy = \sqrt {{x^2} + {y^2}} \)
The value is \(\frac{{dy}}{{dx}} = \frac{{x - y\sqrt {{x^2} + {y^2}} }}{{x\sqrt {{x^2} + {y^2}} - y}}\).
All the tools & learning materials you need for study success - in one app.
Get started for free1-22 Differentiate.
7. \(y = sec\theta tan\theta \)
Differentiate the function.
9.\(g\left( x \right) = \ln \left( {x{e^{ - 2x}}} \right)\).
Find the derivative of the function.
34. \(F\left( t \right) = \frac{{{t^2}}}{{\sqrt {{t^3} + 1} }}\)
53-56 Find \(y'\) and \(y''\).
54. \(y = {\left( {{\bf{1}} + \sqrt x } \right)^{\bf{3}}}\)
Find the derivative of the function:
24. \(y = {\left( {x + \frac{1}{x}} \right)^5}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.