Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

1-22 Differentiate.

20.\(g\left( z \right) = \frac{z}{{\sec z + \tan z}}\)

Short Answer

Expert verified

The differentiation of the function \(g\left( z \right) = \frac{z}{{\sec z + \tan z}}\) is \(g'\left( z \right) = \frac{{1 - z\sec z}}{{\sec z + \tan z}}\).

Step by step solution

01

Write the formula of the derivatives of trigonometric functions and the quotient rule

\(\begin{aligned}\frac{d}{{dx}}\left( {\tan x} \right) &= {\sec ^2}x\\\frac{d}{{dx}}\left( {\sec x} \right) &= \sec x\tan x\end{aligned}\)

The Quotient rule: If \(f\) and \(g\) are differentiable functions, then\(\frac{d}{{dx}}\left( {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \frac{{g\left( x \right)\frac{d}{{dx}}\left( {f\left( x \right)} \right) + f\left( x \right)\frac{d}{{dx}}\left( {g\left( x \right)} \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\).

02

Find the differentiation of the function

Consider the function \(g\left( z \right) = \frac{z}{{\sec z + \tan z}}\). Differentiate the function w.r.t \(z\) by using the derivatives of trigonometric functions and the quotient rule.

\(\begin{aligned}\frac{{d\left( {g\left( z \right)} \right)}}{{dz}} &= \frac{d}{{dz}}\left( {\frac{z}{{\sec z + \tan z}}} \right)\\ &= \frac{{\left( {\sec z + \tan z} \right)\frac{d}{{dz}}\left( z \right) - z\frac{d}{{dz}}\left( {\sec z + \tan z} \right)}}{{{{\left( {\sec z + \tan z} \right)}^2}}}\\ &= \frac{{\left( {\sec z + \tan z} \right)\left( 1 \right) - z\left( {\sec z\tan z + {{\sec }^2}z} \right)}}{{{{\left( {\sec z + \tan z} \right)}^2}}}\\ &= \frac{{\sec z + \tan z - z\sec z\left( {\sec z + \tan z} \right)}}{{{{\left( {\sec z + \tan z} \right)}^2}}}\\ &= \frac{{\left( {\sec z + \tan z} \right)\left( {1 - z\sec z} \right)}}{{{{\left( {\sec z + \tan z} \right)}^2}}}\\ &= \frac{{1 - z\sec z}}{{\sec z + \tan z}}\end{aligned}\)

Thus, the derivative of the function \(g\left( z \right) = \frac{z}{{\sec z + \tan z}}\) is \(g'\left( z \right) = \frac{{1 - z\sec z}}{{\sec z + \tan z}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free