Chapter 3: Q1E (page 173)
1-4: Find the linearization \(L\left( x \right)\) of the function at \(a\).
1. \(f\left( x \right) = {x^3} - {x^2} + 3\), \(a = - 2\)
Short Answer
Linear approximation is \(L\left( x \right) = 16x + 23\).
Chapter 3: Q1E (page 173)
1-4: Find the linearization \(L\left( x \right)\) of the function at \(a\).
1. \(f\left( x \right) = {x^3} - {x^2} + 3\), \(a = - 2\)
Linear approximation is \(L\left( x \right) = 16x + 23\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDifferentiate the function.
16. \(p\left( v \right)=\frac{\ln v}{1-v}\)
Differentiate the function.
15. \(F\left( s \right) = \ln \ln s\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
Find equations of the tangent line to the given curve at the specific point.
36. \(y = \frac{{1 + x}}{{1 + {e^x}}}\), \(\left( {0,\frac{1}{2}} \right)\)
Differentiate the function.
9.\(g\left( x \right) = \ln \left( {x{e^{ - 2x}}} \right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.