Chapter 3: Q1E (page 173)
1-22: Differentiate.
1. \(f\left( x \right) = 3\sin x - 2\cos x\)
Short Answer
The required value is \(f'\left( x \right) = 3\cos x + 2\sin x\).
Chapter 3: Q1E (page 173)
1-22: Differentiate.
1. \(f\left( x \right) = 3\sin x - 2\cos x\)
The required value is \(f'\left( x \right) = 3\cos x + 2\sin x\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function.
40. \(G\left( z \right) = {\left( {1 + {\rm{co}}{{\rm{s}}^2}z} \right)^3}\)
1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
7.\(\mathop {lim}\limits_{\theta \to \frac{\pi }{2}} \frac{{1 - sin\theta }}{{1 + cos2\theta }}\).
Find the derivative of the function.
20. \(A\left( r \right) = \sqrt r \cdot {e^{{r^2} + 1}}\)
Differentiate.
30. \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\)
1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
2. \(\mathop {lim}\limits_{x \to 2} \frac{{{x^2} + x - 6}}{{x - 2}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.