Differentiate the equation \({z^2} = {\left( {x + y} \right)^2} + {500^2}\).
\(\begin{aligned}2z\left( {\frac{{{\rm{d}}z}}{{{\rm{d}}t}}} \right) &= 2\left( {x + y} \right)\left( {\frac{{{\rm{d}}x}}{{{\rm{d}}t}} + \frac{{{\rm{d}}y}}{{{\rm{d}}t}}} \right)\\\frac{{{\rm{d}}z}}{{{\rm{d}}t}} &= \left( {\frac{{x + y}}{z}} \right)\left( {\frac{{{\rm{d}}x}}{{{\rm{d}}t}} + \frac{{{\rm{d}}y}}{{{\rm{d}}t}}} \right)\\ &= \left( {\frac{{x + y}}{{\sqrt {{{\left( {x + y} \right)}^2} + {{500}^2}} }}} \right)\left( {\frac{{{\rm{d}}x}}{{{\rm{d}}t}} + \frac{{{\rm{d}}y}}{{{\rm{d}}t}}} \right)\end{aligned}\)
The distance traveled by the woman is:
\(\begin{aligned}x &= \left( 4 \right)\left( {20} \right)\left( {60} \right)\\ &= 4800\end{aligned}\)
The distance traveled by the man is:
\(\begin{aligned}y &= \left( 5 \right)\left( {15} \right)\left( {60} \right)\\ &= 4500\end{aligned}\)