Chapter 3: Q19E (page 173)
19.Find \(\frac{{dy}}{{dx}}\) by implicit differentiation.
19. \(\sqrt {x + y} = {x^4} + {y^4}\)
Short Answer
The value is \(\frac{{dy}}{{dx}} = \frac{{1 - 8{x^3}\sqrt {x + y} }}{{8{y^3}\sqrt {x + y} - 1}}\).
Chapter 3: Q19E (page 173)
19.Find \(\frac{{dy}}{{dx}}\) by implicit differentiation.
19. \(\sqrt {x + y} = {x^4} + {y^4}\)
The value is \(\frac{{dy}}{{dx}} = \frac{{1 - 8{x^3}\sqrt {x + y} }}{{8{y^3}\sqrt {x + y} - 1}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function.
14. \(g\left( \theta \right) = {\cos ^2}\theta \)
1-22 Differentiate.
15.\(y = \frac{x}{{2 - \tan x}}\)
53-56 Find \(y'\) and \(y''\).
55. \(y = \sqrt {{\bf{cos}}\,x} \)
Find the derivative of the function:
21. \(F\left( x \right) = {\left( {4x + 5} \right)^3}{\left( {{x^2} - 2x + 5} \right)^4}\)
7-52: Find the derivative of the function
11. \(g\left( t \right) = \frac{1}{{{{\left( {2t + 1} \right)}^2}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.