Chapter 3: Q18E (page 173)
3-34: Differentiate the function.
18. \(W\left( t \right) = \sqrt t - 2{e^t}\)
Short Answer
The derivative of the function is \(W'\left( t \right) = \frac{1}{{2\sqrt t }} - 2{e^t}\).
Chapter 3: Q18E (page 173)
3-34: Differentiate the function.
18. \(W\left( t \right) = \sqrt t - 2{e^t}\)
The derivative of the function is \(W'\left( t \right) = \frac{1}{{2\sqrt t }} - 2{e^t}\).
All the tools & learning materials you need for study success - in one app.
Get started for free7-52: Find the derivative of the function
7. \(f\left( x \right) = {\left( {2{x^3} - 5{x^2} + 4} \right)^5}\)
Find the derivative of the function.
36. \(U\left( y \right) = {\left( {\frac{{{y^4} + 1}}{{{y^2} + 1}}} \right)^5}\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
Find the derivative of the function:
\(f\left( z \right) = {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}\)
7-52: Find the derivative of the function
12. \(F\left( t \right) = {\left( {\frac{1}{{2t + 1}}} \right)^4}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.