Chapter 3: Q17E (page 173)
Find the derivative of the function.
17. \(y = {x^2}{e^{ - 3x}}\)
Short Answer
The derivative of the function is \(y' = x{e^{ - 3x}}\left( {2 - 3x} \right)\).
Chapter 3: Q17E (page 173)
Find the derivative of the function.
17. \(y = {x^2}{e^{ - 3x}}\)
The derivative of the function is \(y' = x{e^{ - 3x}}\left( {2 - 3x} \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function:
23. \(y = \sqrt {\frac{x}{{x + 1}}} \)
Differentiate the function.
9.\(g\left( x \right) = \ln \left( {x{e^{ - 2x}}} \right)\).
1-22 Differentiate.
15.\(y = \frac{x}{{2 - \tan x}}\)
Differentiate the function.
14. \(y = {\log _{10}}\sec x\)
Use the method of Exercise 57 to compute \(Q'\left( {\bf{0}} \right)\), where
\(Q\left( x \right) = \frac{{{\bf{1}} + x + {x^{\bf{2}}} + x{e^x}}}{{{\bf{1}} - x + {x^{\bf{2}}} - x{e^x}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.