Chapter 3: Q17E (page 173)
17. Find\(\frac{{dy}}{{dx}}\)by implicit differentiation.
\(2x{e^y} + y{e^x} = 3\)
Short Answer
The value is\(\frac{{dy}}{{dx}} = - \frac{{2{e^y} + y{e^x}}}{{2x{e^y} + {e^x}}}\).
Chapter 3: Q17E (page 173)
17. Find\(\frac{{dy}}{{dx}}\)by implicit differentiation.
\(2x{e^y} + y{e^x} = 3\)
The value is\(\frac{{dy}}{{dx}} = - \frac{{2{e^y} + y{e^x}}}{{2x{e^y} + {e^x}}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function.
36. \(U\left( y \right) = {\left( {\frac{{{y^4} + 1}}{{{y^2} + 1}}} \right)^5}\)
Find the derivative of the function.
34. \(F\left( t \right) = \frac{{{t^2}}}{{\sqrt {{t^3} + 1} }}\)
Find the derivative of the function.
40. \(G\left( z \right) = {\left( {1 + {\rm{co}}{{\rm{s}}^2}z} \right)^3}\)
7-52: Find the derivative of the function
10. \(f\left( x \right) = \frac{1}{{\sqrt(3){{{x^2} - 1}}}}\)
1-22 Differentiate.
15.\(y = \frac{x}{{2 - \tan x}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.