Chapter 3: Q16E (page 173)
11-18: Find the differential of the function
16. \(y = \sqrt {1 + \cos \theta } \)
Short Answer
The differential of the function is \(dy = - \frac{{\sin \theta }}{{2\sqrt {1 + \cos \theta } }}d\theta \).
Chapter 3: Q16E (page 173)
11-18: Find the differential of the function
16. \(y = \sqrt {1 + \cos \theta } \)
The differential of the function is \(dy = - \frac{{\sin \theta }}{{2\sqrt {1 + \cos \theta } }}d\theta \).
All the tools & learning materials you need for study success - in one app.
Get started for free53-56 Find \(y'\) and \(y''\).
54. \(y = {\left( {{\bf{1}} + \sqrt x } \right)^{\bf{3}}}\)
Differentiate.
28. \(F\left( t \right) = \frac{{At}}{{B{t^2} + C{t^3}}}\)
Find \(f'\left( x \right)\) and \(f''\left( x \right)\).
34.\(f\left( x \right) = \frac{x}{{1 + \sqrt x }}\)
Find the derivative of the function:
25. \(y = {e^{\tan \theta }}\)
27-34: Explain using theorem 4,5,7, and 9, why the function is continuous at every number in its domain. State the domain.
34. \(g\left( t \right) = {\cos ^{ - 1}}\left( {{e^t} - 1} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.