Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

1-22 Differentiate.

16.\(f\left( t \right) = \frac{{\cot \,t}}{{{e^t}}}\)

Short Answer

Expert verified

The differentiation of the function \(f\left( t \right) = \frac{{\cot t}}{{{e^t}}}\) is \(f'\left( t \right) = \frac{{ - {{\csc }^2}t - \cot t}}{{{e^t}}}\).

Step by step solution

01

Write the formula of the derivatives of trigonometric functions, exponential function and the quotient rule

\(\begin{aligned}\frac{d}{{dx}}\left( {\cot } \right) &= {\csc ^2}x\\\frac{d}{{dx}}\left( {{e^x}} \right) &= {e^x}\end{aligned}\)

The Quotient rule: If \(f\) and \(g\) are differentiable functions, then\(\frac{d}{{dx}}\left( {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \frac{{g\left( x \right)\frac{d}{{dx}}\left( {f\left( x \right)} \right) + f\left( x \right)\frac{d}{{dx}}\left( {g\left( x \right)} \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\).

02

Find the differentiation of the function

Consider the function\(f\left( t \right) = \frac{{\cot t}}{{{e^t}}}\). Differentiate the function w.r.t \(t\) by using the derivatives of trigonometric functions, exponential function and the quotient rule.

\(\begin{aligned}\frac{{d\left( {f\left( t \right)} \right)}}{{dt}} &= \frac{d}{{dt}}\left( {\frac{{\cot t}}{{{e^t}}}} \right)\\ &= \frac{{{e^t}\frac{d}{{dt}}\left( {\cot t} \right) - \cot t\frac{d}{{dt}}\left( {{e^t}} \right)}}{{{{\left( {{e^t}} \right)}^2}}}\\ &= \frac{{{e^t}\left( { - {{\csc }^2}t} \right) - \cot t\left( {{e^t}} \right)}}{{{{\left( {{e^t}} \right)}^2}}}\\ &= \frac{{{e^t}\left( { - {{\csc }^2}t - \cot t} \right)}}{{{{\left( {{e^t}} \right)}^2}}}\\ &= \frac{{ - {{\csc }^2}t - \cot t}}{{{e^t}}}\end{aligned}\)

Thus, the derivative of the function \(f\left( t \right) = \frac{{\cot t}}{{{e^t}}}\) is \(f'\left( t \right) = \frac{{ - {{\csc }^2}t - \cot t}}{{{e^t}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free