Chapter 3: Q15E (page 173)
15. Find\(\frac{{dy}}{{dx}}\)by implicit differentiation.
15.\(y\cos x = {x^2} + {y^2}\)
Short Answer
The value is \(\frac{{dy}}{{dx}} = \frac{{2x + y\sin x}}{{\cos x - 2y}}\).
Chapter 3: Q15E (page 173)
15. Find\(\frac{{dy}}{{dx}}\)by implicit differentiation.
15.\(y\cos x = {x^2} + {y^2}\)
The value is \(\frac{{dy}}{{dx}} = \frac{{2x + y\sin x}}{{\cos x - 2y}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function:
22. \(G\left( z \right) = {\left( {1 - 4z} \right)^2}\sqrt {{z^2} + 1} \)
Find the derivative of the function.
36. \(U\left( y \right) = {\left( {\frac{{{y^4} + 1}}{{{y^2} + 1}}} \right)^5}\)
Find \(f'\left( x \right)\) and \(f''\left( x \right)\).
31.\(f\left( x \right) = {x^2}{e^x}\)
1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
2. \(\mathop {lim}\limits_{x \to 2} \frac{{{x^2} + x - 6}}{{x - 2}}\).
7-52: Find the derivative of the function
8. \(f\left( x \right) = {\left( {{x^5} + 3{x^2} - x} \right)^{50}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.