Chapter 3: Q14E (page 173)
1-22 Differentiate.
14.\(y = \frac{{\cos x}}{{1 - \sin x}}\)
Short Answer
The differentiation of the function \(y = \frac{{\cos x}}{{1 - \sin x}}\) is \(y' = \frac{1}{{1 - \sin x}}\).
Chapter 3: Q14E (page 173)
1-22 Differentiate.
14.\(y = \frac{{\cos x}}{{1 - \sin x}}\)
The differentiation of the function \(y = \frac{{\cos x}}{{1 - \sin x}}\) is \(y' = \frac{1}{{1 - \sin x}}\).
All the tools & learning materials you need for study success - in one app.
Get started for free57-60 Find an equation of the tangent line to the curve at the given point.
58. \(y = \sqrt {{\bf{1}} + {x^{\bf{3}}}} \), \(\left( {{\bf{2}},{\bf{3}}} \right)\)
Find the derivative of the function.
38. \(g\left( x \right) = {e^{ - x}}{\rm{cos}}\left( {{x^2}} \right)\)
Find the derivative of the function.
33. \(F\left( t \right) = {e^{t\sin 2t}}\)
Find the derivative of the function.
34. \(F\left( t \right) = \frac{{{t^2}}}{{\sqrt {{t^3} + 1} }}\)
Use the method of Exercise 57 to compute \(Q'\left( {\bf{0}} \right)\), where
\(Q\left( x \right) = \frac{{{\bf{1}} + x + {x^{\bf{2}}} + x{e^x}}}{{{\bf{1}} - x + {x^{\bf{2}}} - x{e^x}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.