Chapter 3: Q12E (page 173)
Question: 12. Find \(\frac{{dy}}{{dx}}\) by implicit differentiation.
12. \({e^x}\sin y = x + y\)
Short Answer
The value is \(\frac{{dy}}{{dx}} = \frac{{1 - {e^x}\sin y}}{{{e^x}\cos y - 1}}\).
Chapter 3: Q12E (page 173)
Question: 12. Find \(\frac{{dy}}{{dx}}\) by implicit differentiation.
12. \({e^x}\sin y = x + y\)
The value is \(\frac{{dy}}{{dx}} = \frac{{1 - {e^x}\sin y}}{{{e^x}\cos y - 1}}\).
All the tools & learning materials you need for study success - in one app.
Get started for free(a) If \(F\left( x \right) = f\left( x \right)g\left( x \right)\), where fand ghave derivative of all orders, show that \(F'' = f''g + {\bf{2}}f'g' + fg''\).
(b) Find the similar formulas for \(F'''\), and \({F^{\left( {\bf{4}} \right)}}\).
(c) Guess a formula for \({F^{\left( n \right)}}\).
Find the derivative of the function:
28. \(s\left( t \right) = \sqrt {\frac{{1 + \sin t}}{{1 + \cos t}}} \)
Differentiate the function.
21.\(y = \ln \left( {{e^{ - x}} + x{e^{ - x}}} \right)\)
7-52: Find the derivative of the function
8. \(f\left( x \right) = {\left( {{x^5} + 3{x^2} - x} \right)^{50}}\)
Find \(f'\left( x \right)\) and \(f''\left( x \right)\).
33.\(f\left( x \right) = \frac{x}{{{x^2} - 1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.