Rewrite the function as the power of \(t\) as shown below:
\(\begin{aligned}F\left( t \right) &= {\left( {\frac{1}{{2t + 1}}} \right)^4}\\ &= {\left( {{{\left( {2t + 1} \right)}^{ - 1}}} \right)^4}\\ &= {\left( {2t + 1} \right)^{ - 4}}\end{aligned}\)
Use the power rule combined with the chain rule to obtain the derivative of the function as shown below:
\(\begin{aligned}F'\left( t \right) &= \frac{d}{{dt}}{\left( {2t + 1} \right)^{ - 4}}\\ &= - 4{\left( {2t + 1} \right)^{ - 5}} \cdot \frac{d}{{dt}}\left( {2t + 1} \right)\\ &= - 4{\left( {2t + 1} \right)^{ - 5}} \cdot \left( 2 \right)\\ &= - \frac{8}{{{{\left( {2t + 1} \right)}^5}}}\end{aligned}\)
Thus, the derivative of the function is \(F'\left( t \right) = - \frac{8}{{{{\left( {2t + 1} \right)}^5}}}\).