Consider the function \(f\left( x \right) = {x^{\frac{3}{2}}} + {x^{ - 3}}\). Differentiate the function w.r.t \(x\) by using the sum rule and the power rule.
\(\begin{aligned}\frac{{d\left( {f\left( x \right)} \right)}}{{dx}} &= \frac{{d\left( {{x^{\frac{3}{2}}} + {x^{ - 3}}} \right)}}{{dx}}\\ &= \frac{d}{{dx}}\left( {{x^{\frac{3}{2}}}} \right) + \frac{d}{{dx}}\left( {{x^{ - 3}}} \right)\\ &= \frac{d}{{dx}}\left( {\frac{3}{2}{x^{\frac{3}{2} - 1}}} \right) + \frac{d}{{dx}}\left( { - 3{x^{ - 3 - 1}}} \right)\\ &= \frac{3}{2}{x^{\frac{1}{2}}} - 3{x^{ - 4}}\end{aligned}\)
Thus, the derivative of the function \(f\left( x \right) = {x^{\frac{3}{2}}} + {x^{ - 3}}\) is \(f'\left( x \right) = \frac{3}{2}{x^{\frac{1}{2}}} - 3{x^{ - 4}}\).