Chapter 3: Q11E (page 173)
11. Find \(\frac{{dy}}{{dx}}\) by implicit differentiation.
11. \(\sin x + \cos y = 2x - 3y\)
Short Answer
The value is \(\frac{{dy}}{{dx}} = \frac{{2 - \cos x}}{{3 - \sin y}}\).
Chapter 3: Q11E (page 173)
11. Find \(\frac{{dy}}{{dx}}\) by implicit differentiation.
11. \(\sin x + \cos y = 2x - 3y\)
The value is \(\frac{{dy}}{{dx}} = \frac{{2 - \cos x}}{{3 - \sin y}}\).
All the tools & learning materials you need for study success - in one app.
Get started for free1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
3.\(\mathop {lim}\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \frac{{cosx}}{{1 - sinx}}\).
Differentiate the function.
24.\(y = \ln \sqrt {\frac{{1 + 2x}}{{1 - 2x}}} \)
Differentiate the function.
17. \(T\left( z \right) = {2^x}{\log _2}z\)
1-22: Differentiate.
2. \(f\left( x \right) = \tan x - 4\sin x\)
1-22 Differentiate.
15.\(y = \frac{x}{{2 - \tan x}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.