Chapter 3: Q101E (page 173)
If \(F = f \circ g \circ h\), where \(f\) , \(g\), and \(h\) are differentiable functions,
use the Chain Rule to show that
\(F'\left( x \right) = f'\left( {g\left( {h\left( x \right)} \right)} \right) \cdot g'\left( {h\left( x \right)} \right) \cdot h'\left( x \right)\)
Short Answer
It is proved that \(F'\left( x \right) = f'\left( {g\left( {h\left( x \right)} \right)} \right) \cdot g'\left( {h\left( x \right)} \right) \cdot h'\left( x \right)\).