Chapter 4: Q67E (page 279)
If \(a\) and \(b\) are positive numbers, find the maximum value of \(f\left( x \right) = {x^a}{\left( {1 - x} \right)^b},\,\,0 \le x \le 1\).
Short Answer
The absolute maximum value of the function \(f\left( x \right) = {x^a}{\left( {1 - x} \right)^b},0 \le x \le 1\) is \(f\left( {\frac{a}{{a + b}}} \right) = \frac{{{a^a}{b^b}}}{{{{\left( {a + b} \right)}^{a + b}}}}\).