Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the absolute maximum and absolute minimum values of \(f\) on the given interval.

65. \(f\left( x \right) = \ln \left( {{x^2} + x + 1} \right),\,\,\left( { - 1,1} \right)\)

Short Answer

Expert verified

The absolute maximum value of the function \(f\left( x \right) = \ln \left( {{x^2} + x + 1} \right)\)is \(f\left( 1 \right) \approx 1.099\).

The absolute minimum value of the function \(f\left( x \right) = \ln \left( {{x^2} + x + 1} \right)\) is \(f\left( { - \frac{1}{2}} \right) \approx - 0.288\).

Step by step solution

01

Absolute Extremum

Suppose, a continuous function on a closed interval\(\left( {a,b} \right)\)say,\(f\left( x \right)\). Then, the function has both absolute maximum and absolute minimum. Which is given by obtained the critical numbers and then, find\(f\left( x \right)\)at the end points and the critical numbers then, compare the values. The maximum value will give the absolute maxima and the minimum value gives absolute minima.

02

Find the critical points by differentiating the given function

The given function is \(f\left( x \right) = \ln \left( {{x^2} + x + 1} \right)\).

So, differentiating the above function with respect to \(x\) as:

\(\begin{aligned}{c}\frac{d}{{dx}}\left( {f\left( x \right)} \right) &= \frac{d}{{dx}}\left( {\ln \left( {{x^2} + x + 1} \right)} \right)\\f'\left( x \right) &= \frac{1}{{{x^2} + x + 1}} \cdot \frac{d}{{dx}}\left( {{x^2} + x + 1} \right)\\ &= \frac{{\frac{d}{{dx}}\left( {{x^2}} \right) + \frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( 1 \right)}}{{{x^2} + x + 1}}\\ &= \frac{{2x + 1 + 0}}{{{x^2} + x + 1}}\\ &= \frac{{2x + 1}}{{{x^2} + x + 1}}\end{aligned}\)

Now, substitute \(f'\left( x \right) = 0\) and solve for \(x\) to get the critical points.

\(\begin{aligned}{c}\frac{{2x + 1}}{{{x^2} + x + 1}} &= 0\\2x + 1 &= 0\\x &= - \frac{1}{2}\end{aligned}\)

03

Find value of \(f\) at critical points in \(\left( { - 1,1} \right)\)

At \(x = - \frac{1}{2}\),

\(\begin{aligned}{c}f\left( { - \frac{1}{2}} \right) &= \ln \left( {{{\left( { - \frac{1}{2}} \right)}^2} + \left( { - \frac{1}{2}} \right) + 1} \right)\\ &= \ln \left( {\frac{3}{4}} \right)\\ &\approx - 0.288\end{aligned}\)

04

Find value of \(f\) at endpoints of \(\left( { - 1,1} \right)\)

At \(x = - 1\)

\(\begin{aligned}{c}f\left( { - 1} \right) &= \ln \left( {{{\left( { - 1} \right)}^2} + \left( { - 1} \right) + 1} \right)\\ &= \ln \left( 1 \right)\\ &= 0\end{aligned}\)

At \(x = 1\)

\(\begin{aligned}{c}f\left( 1 \right) &= \ln \left( {{{\left( 1 \right)}^2} + 1 + 1} \right)\\ &= \ln \left( 3 \right)\\ &\approx 1.099\end{aligned}\)

05

Now, find the absolute maximum and minimum value from the above steps

By the above two steps maximum and minimum value can be as when \(x = - \frac{1}{2}\)the value of \(f\left( { - \frac{1}{2}} \right) \approx - 0.288\) that is it is the minimum value and when \(x = 1\)the value of \(f\left( 1 \right) \approx 1.099\) that is it is the maximum value.

Thus, the absolute maximum and minimum values of the function \(f\left( x \right) = \ln \left( {{x^2} + x + 1} \right)\)are \(f\left( 1 \right) \approx 1.099\) and \(f\left( { - \frac{1}{2}} \right) \approx - 0.288\) respectively.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free