Determine the values of \(f\) at the critical numbers as shown below:
\(\begin{aligned}{c}f\left( { - 1} \right) &= 3{\left( { - 1} \right)^4} - 4{\left( { - 1} \right)^3} - 12{\left( { - 1} \right)^2} + 1\\ &= 3 + 4 - 12 + 1\\ &= - 4\\f\left( 0 \right) &= 3{\left( 0 \right)^4} - 4{\left( 0 \right)^3} - 12{\left( 0 \right)^2} + 1\\ &= 0 - 0 - 0 + 1\\ &= 1\\f\left( 2 \right) &= 3{\left( 2 \right)^4} - 4{\left( 2 \right)^3} - 12{\left( 2 \right)^2} + 1\\ &= 48 - 32 - 48 + 1\\ &= - 31\end{aligned}\)
Determine the values of \(f\) at the endpoints of the interval \(\left( { - 2,3} \right)\)as shown below:
\(\begin{aligned}{c}f\left( { - 2} \right) &= 3{\left( { - 2} \right)^4} - 4{\left( { - 2} \right)^3} - 12{\left( { - 2} \right)^2} + 1\\ &= 48 + 32 - 48 + 1\\ &= 33\\f\left( 3 \right) &= 3{\left( 3 \right)^4} - 4{\left( 3 \right)^3} - 12{\left( 3 \right)^2} + 1\\ &= 243 - 108 - 108 + 1\\ &= 28\end{aligned}\)
It is observed from these values of \(f\) that the absolute maximum value is\(f\left( { - 2} \right) = 33\) and the absolute minimum value is \(f\left( 2 \right) = - 31\).
Thus, the absolute maximum value and absolute minimum value of the function \(f\) are \(f\left( { - 2} \right) = 33\) and \(f\left( 2 \right) = - 31\) respectively.