Find the roots of \(A'\left( x \right) = 0\).
\[\begin{aligned}{c}4\pi \cdot \frac{{ - x\sqrt {{r^2} - {x^2}} - 2{x^2} + {r^2}}}{{\sqrt {{r^2} - {x^2}} }} = 0\\ - x\sqrt {{r^2} - {x^2}} - 2{x^2} + {r^2} = 0\\{x^2}\left( {{r^2} - {x^2}} \right) = {\left( {{r^2} - 2{x^2}} \right)^2}\\{r^2}{x^2} - {x^4} = {r^4} - 4{r^2}{x^2} + 4{x^4}\\5{x^4} - 5{r^2}{x^2} + {r^4} = 0\\{x^2} = \frac{{5 \pm \sqrt 5 }}{{10}}{r^2}\end{aligned}\]
The positive value of \({x^2}\) must is neglected, as it does not lie in the interval \(0 \le x \le r\).
Therefore, \(x = \sqrt {\frac{{5 - \sqrt 5 }}{{10}}} r\).
So, according to the first derivative test, the value of the surface area will be maximum when \(x = \sqrt {\frac{{5 - \sqrt 5 }}{{10}}} r\).