Evaluate the limit as shown below:
\(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}\sin x}}{{\sin x - x}} = \frac{{{0^2}\sin 0}}{{\sin 0 - 0}}\)
The limit is in indeterminate form \(\frac{0}{0}\).
Apply l’Hospital Rule as shown below:
\(\begin{array}{c}\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}\sin x}}{{\sin x - x}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{d}{{dx}}\left( {{x^2}\sin x} \right)}}{{\frac{d}{{dx}}\left( {\sin x - x} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}\cos x + 2x\sin x}}{{\cos x - 1}}\end{array}\)
It is observed that the limit is in indeterminate form \(\frac{0}{0}\).
Apply l’Hospital Rule as shown below:
\(\begin{array}{c}\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}\cos x + 2x\sin x}}{{\cos x - 1}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{d}{{dx}}\left( {{x^2}\cos x + 2x\sin x} \right)}}{{\frac{d}{{dx}}\left( {\cos x - 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{ - {x^2}\sin x + 2x\cos x + 2x\cos x + 2\sin x}}{{ - \sin x}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {2 - {x^2}} \right)\sin x + 4x\cos x}}{{ - \sin x}}\end{array}\)
It is observed that the limit is in indeterminate form \(\frac{0}{0}\).
Apply l’Hospital Rule as shown below:
\(\begin{array}{c}\mathop {\lim }\limits_{x \to 0} \frac{{\left( {2 - {x^2}} \right)\sin x + 4x\cos x}}{{ - \sin x}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{d}{{dx}}\left( {\left( {2 - {x^2}} \right)\sin x + 4x\cos x} \right)}}{{\frac{d}{{dx}}\left( { - \sin x} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {2 - {x^2}} \right)\cos x - 2x\sin x - 4x\sin x + 4\cos x}}{{ - \cos x}}\\ = \frac{{\left( {2 - {0^2}} \right)\cos 0 - 2\left( 0 \right)\sin 0 - 4\left( 0 \right)\sin 0 + 4\cos 0}}{{ - \cos 0}}\\ = \frac{{2\left( 1 \right) - 0 - 0 + 4\left( 1 \right)}}{{ - 1}}\\ = - 6\end{array}\)
Thus, the value of the limit is \( - 6\).