The family of the curve given by\(f\left( x \right) = x{e^{ - cx}}\).
When\(c < 0,\)then
\(\begin{aligned}{c}\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } x{e^{ - cx}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{x}{{{e^{cx}}}}\end{aligned}\)
It is observed that the limit is in indeterminate form\(\frac{\infty }{\infty }\).
Apply l’Hospital rule as shown below:
\(\begin{aligned}{c}\mathop {\lim }\limits_{x \to - \infty } \frac{x}{{{e^{cx}}}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\frac{d}{{dx}}\left( x \right)}}{{\frac{d}{{dx}}\left( {{e^{cx}}} \right)}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{1}{{c{e^{cx}}}}\\ = 0\end{aligned}\)
And\(\mathop {\lim }\limits_{x \to \infty } \frac{x}{{{e^{cx}}}} = \infty \).
When\(c > 0,\)then\(\mathop {\lim }\limits_{x \to - \infty } \frac{x}{{{e^{cx}}}} = - \infty \),
\(\begin{aligned}{c}\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } x{e^{ - cx}}\\ = \mathop {\lim }\limits_{x \to \infty } \frac{x}{{{e^{cx}}}}\end{aligned}\)
It is observed that the limit is in indeterminate form\(\frac{\infty }{\infty }\).
Apply l’Hospital rule as shown below:
\(\begin{aligned}{c}\mathop {\lim }\limits_{x \to \infty } \frac{x}{{{e^{cx}}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{d}{{dx}}\left( x \right)}}{{\frac{d}{{dx}}\left( {{e^{cx}}} \right)}}\\ = \mathop {\lim }\limits_{x \to \infty } \frac{1}{{c{e^{cx}}}}\\ = 0\end{aligned}\)
When\(c = 0,\)then\(f\left( x \right) = x\). Therefore,\(f\left( x \right) = \pm \infty \)respectively.
It is observed that \(c = 0\) is a transitional value. We can now eliminate the case \(c = 0\) because it is known that how the function works in the case.