Evaluate the limit as shown below:
\(\mathop {\lim }\limits_{x \to 1} \frac{{x\sin x\left( {x - 1} \right)}}{{2{x^2} - x - 1}} = \frac{{\sin 1\left( {1 - 1} \right)}}{{2{{\left( 1 \right)}^2} - 1 - 1}}\)
The limit is in indeterminate form \(\frac{0}{0}\).
Apply l’Hospital Rule as shown below:
\(\begin{array}{c}\mathop {\lim }\limits_{x \to 1} \frac{{x\sin x\left( {x - 1} \right)}}{{2{x^2} - x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{d}{{dx}}\left( {x\sin x\left( {x - 1} \right)} \right)}}{{\frac{d}{{dx}}\left( {2{x^2} - x - 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{x\cos \left( {x - 1} \right) + \sin \left( {x - 1} \right)}}{{4x - 1}}\\ = \frac{{\cos \left( {1 - 1} \right) + \sin \left( {1 - 1} \right)}}{{4\left( 1 \right) - 1}}\\ = \frac{{\cos 0 + \sin 0}}{{4 - 1}}\\ = \frac{{1 + 0}}{3}\\ = \frac{1}{3}\end{array}\)
Thus, the value of the limit is \(\frac{1}{3}\).