Let \(S = {d^2} \Rightarrow S = {\left( {x - 1} \right)^2} + {y^2}\)
Using the ellipse equation we get
\(S = {\left( {x - 1} \right)^2} + \left( {4 - 4{x^2}} \right)\)
Now,
\(\begin{aligned}{l}S' = 2\left( {x - 1} \right) - 8x\\S' = - 6x - 2\end{aligned}\)
So the critical point will be
\(\begin{aligned}{c}S' = 0\\ - 6x - 2 = 0\\6x = - 2\\x = \frac{{ - 2}}{6}\\x = - \frac{1}{3}\end{aligned}\)
Hence the critical point is \(x = - \frac{1}{3}\).
The second derivative will be \(S'' = - 6 < 0\).
Hence the maximum value of the function \(S\) will be at the point \(x = - \frac{1}{3}\).
We see that \(S\left( { - 1} \right) = 4\),\(S\left( 1 \right) = 0\) and \(S\left( { - \frac{1}{3}} \right) = \frac{{16}}{3}\).
Hence \(\sqrt {\frac{{16}}{3}} \) is the maximum distance.
Also
\(\begin{aligned}{c}y = \pm \sqrt {4 - 4{{\left( { - \frac{1}{3}} \right)}^2}} \\ = \pm \sqrt {4 - \frac{4}{9}} \\ = \pm \sqrt {\frac{{32}}{9}} \\ = \pm \frac{4}{3}\sqrt 2 \end{aligned}\)
Hence the farthest points to the ellipse are \(\left( { - \frac{1}{3}, \pm \frac{4}{3}\sqrt 2 } \right)\).