The given limit is:
\(\mathop {\lim }\limits_{u \to \infty } \frac{{{e^{\frac{u}{{10}}}}}}{{{u^3}}}\)
Here, \(f\left( u \right){\rm{ and }}g\left( u \right)\) both the functions are differentiable.
\(\mathop {\lim }\limits_{u \to \infty } \frac{{{e^{\frac{u}{{10}}}}}}{{{u^3}}} = \frac{\infty }{\infty }\)
So, usingL’Hospital’s Rule, we have:
\(\begin{array}{c}\mathop {\lim }\limits_{u \to \infty } \frac{{f\left( u \right)}}{{g\left( u \right)}} = \mathop {\lim }\limits_{u \to \infty } \frac{{f'\left( u \right)}}{{g'\left( u \right)}}\\ = \mathop {\lim }\limits_{u \to \infty } \frac{{\frac{1}{{10}}\left( {{e^{\frac{u}{{10}}}}} \right)}}{{3{u^2}}}\\ = \frac{1}{{30}}\mathop {\lim }\limits_{u \to \infty } \frac{{{e^{\frac{u}{{10}}}}}}{{{u^2}}}\end{array}\)
Again, usingL’Hospital’s Ruletwo times, we have:
\(\begin{array}{c}\frac{1}{{30}}\mathop {\lim }\limits_{u \to \infty } \frac{{{e^{\frac{u}{{10}}}}}}{{{u^2}}} = \frac{1}{{600}}\mathop {\lim }\limits_{u \to \infty } \frac{{{e^{\frac{u}{{10}}}}}}{u}\\ = \frac{1}{{6000}}\mathop {\lim }\limits_{u \to \infty } \frac{{{e^{\frac{u}{{10}}}}}}{1}\\ = \frac{{{e^\infty }}}{{6000}}\\ = \infty \end{array}\)
Hence, the required value is \(\mathop {\lim }\limits_{u \to \infty } \frac{{{e^{\frac{u}{{10}}}}}}{{{u^3}}} = \infty \).