The given limit is:
\(\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt x }}{{1 + {e^x}}}\)
Here, we have \(f\left( x \right){\rm{ and }}g\left( x \right)\) both the functions are differentiable.
\(\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt x }}{{1 + {e^x}}} = \frac{\infty }{\infty }\)
So, usingL’Hospital’s Rule, we have:
\(\begin{array}{c}\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to \infty } \frac{{f'\left( x \right)}}{{g'\left( x \right)}}\\ = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{1}{{2\sqrt x }}}}{{{e^x}}}\\ = \frac{1}{\infty } = 0\end{array}\)
Hence, the required value is \(\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt x }}{{1 + {e^x}}} = 0\).