Chapter 9: Problem 54
In this section, several models are presented and the solution of the associated differential equation is given. Later in the chapter, we present methods for solving these differential equations. One possible model that describes the free fall of an object in a gravitational field subject to air resistance uses the equation \(v^{\prime}(t)=g-b v,\) where \(v(t)\) is the velocity of the object for \(t \geq 0, g=9.8 \mathrm{m} / \mathrm{s}^{2}\) is the acceleration due to gravity, and \(b>0\) is a constant that involves the mass of the object and the air resistance. a. Verify by substitution that a solution of the equation, subject to the initial condition \(v(0)=0,\) is \(v(t)=\frac{g}{b}\left(1-e^{-b t}\right)\) b. Graph the solution with \(b=0.1 \mathrm{s}^{-1}\) c. Using the graph in part (b), estimate the terminal velocity \(\lim _{t \rightarrow \infty} v(t)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.