Chapter 9: Problem 53
In this section, several models are presented and the solution of the associated differential equation is given. Later in the chapter, we present methods for solving these differential equations. Logistic population growth Widely used models for population growth involve the logistic equation \(P^{\prime}(t)=r P\left(1-\frac{P}{K}\right)\) where \(P(t)\) is the population, for \(t \geq 0,\) and \(r>0\) and \(K>0\) are given constants. a. Verify by substitution that the general solution of the equation is \(P(t)=\frac{K}{1+C e^{-r t}},\) where \(C\) is an arbitrary constant. b. Find the value of \(C\) that corresponds to the initial condition \(P(0)=50\) c. Graph the solution for \(P(0)=50, r=0.1,\) and \(K=300\) d. Find \(\lim _{t \rightarrow \infty} P(t)\) and check that the result is consistent with the graph in part (c).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.