Chapter 9: Problem 49
Convergence of Euler's method Suppose Euler's method is applied to the initial value problem \(y^{\prime}(t)=a y, y(0)=1,\) which has the exact solution \(y(t)=e^{a t} .\) For this exercise, let \(h\) denote the time step (rather than \(\Delta t\) ). The grid points are then given by \(t_{k}=k h .\) We let \(u_{k}\) be the Euler approximation to the exact solution \(y\left(t_{k}\right),\) for \(k=0,1,2, \ldots\). a. Show that Euler's method applied to this problem can be written \(u_{0}=1, u_{k+1}=(1+a h) u_{k},\) for \(k=0,1,2, \ldots\). b. Show by substitution that \(u_{k}=(1+a h)^{k}\) is a solution of the equations in part (a), for \(k=0,1,2, \ldots\). c. Recall from Section 4.7 that \(\lim _{h \rightarrow 0}(1+a h)^{1 / h}=e^{a} .\) Use this fact to show that as the time step goes to zero \((h \rightarrow 0,\) with \(\left.t_{k}=k h \text { fixed }\right),\) the approximations given by Euler's method approach the exact solution of the initial value problem; that is, \(\lim _{h \rightarrow 0} u_{k}=\lim _{h \rightarrow 0}(1+a h)^{k}=y\left(t_{k}\right)=e^{a t_{k}}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.