Chapter 9: Problem 44
Orthogonal trajectories Two curves are orthogonal to each other if their tangent lines are perpendicular at each point of intersection. A family of curves forms orthogonal trajectories with another family of curves if each curve in one family is orthogonal to each curve in the other family. Use the following steps to find the orthogonal trajectories of the family of ellipses \(2 x^{2}+y^{2}=a^{2}\). a. Apply implicit differentiation to \(2 x^{2}+y^{2}=a^{2}\) to show that \(\frac{d y}{d x}=\frac{-2 x}{y}\) b. The family of trajectories orthogonal to \(2 x^{2}+y^{2}=a^{2}\) satisfies the differential equation \(\frac{d y}{d x}=\frac{y}{2 x} .\) Why? c. Solve the differential equation in part (b) to verify that \(y^{2}=e^{c}|x|\) and then explain why it follows that \(y^{2}=k x\) where \(k\) is an arbitrary constant. Therefore, the family of parabolas \(y^{2}=k x\) forms the orthogonal trajectories of the family of ellipses \(2 x^{2}+y^{2}=a^{2}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.