Chapter 9: Problem 44
Direction field analysis Consider the first-order initial value problem \(y^{\prime}(t)=a y+b, y(0)=A,\) for \(t \geq 0,\) where \(a, b,\) and \(A\) are real numbers. a. Explain why \(y=-b / a\) is an equilibrium solution and corresponds to a horizontal line in the direction field. b. Draw a representative direction field in the case that \(a>0\) Show that if \(A>-b / a\), then the solution increases for \(t \geq 0,\) and that if \(A<-b / a,\) then the solution decreases for \(t \geq 0\). c. Draw a representative direction field in the case that \(a<0\) Show that if \(A>-b / a\), then the solution decreases for \(t \geq 0,\) and that if \(A<-b / a,\) then the solution increases for \(t \geq 0\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.