Chapter 9: Problem 40
Logistic equation for an epidemic When an infected person is introduced into a closed and otherwise healthy community, the number of people who contract the disease (in the absence of any intervention) may be modeled by the logistic equation $$\frac{d P}{d t}=k P\left(1-\frac{P}{A}\right), P(0)=P_{0}$$ where \(k\) is a positive infection rate, \(A\) is the number of people in the community, and \(P_{0}\) is the number of infected people at \(t=0\) The model also assumes no recovery. a. Find the solution of the initial value problem, for \(t \geq 0\), in terms of \(k, A,\) and \(P_{0}.\) b. Graph the solution in the case that \(k=0.025, A=300,\) and \(P_{0}=1.\) c. For a fixed value of \(k\) and \(A\), describe the long-term behavior of the solutions, for any \(P_{0}\) with \(0
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.