Chapter 9: Problem 4
Give a geometrical explanation of how Euler's method works.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 9: Problem 4
Give a geometrical explanation of how Euler's method works.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeSolve the differential equation for Newton's Law of Cooling to find the temperature function in the following cases. Then answer any additional questions. An iron rod is removed from a blacksmith's forge at a temperature of \(900^{\circ} \mathrm{C}\). Assume \(k=0.02\) and the rod cools in a room with a temperature of \(30^{\circ} \mathrm{C}\). When does the temperature of the rod reach \(100^{\circ} \mathrm{C} ?\)
Explain how a stirred tank reaction works.
Equilibrium solutions \(A\) differential equation of the form \(y^{\prime}(t)=f(y)\) is said to be autonomous (the function \(f\) depends only on y. The constant function \(y=y_{0}\) is an equilibrium solution of the equation provided \(f\left(y_{0}\right)=0\) (because then \(y^{\prime}(t)=0\) and the solution remains constant for all \(t\) ). Note that equilibrium solutions correspond to horizontal lines in the direction field. Note also that for autonomous equations, the direction field is independent of t. Carry out the following analysis on the given equations. a. Find the equilibrium solutions. b. Sketch the direction field, for \(t \geq 0\). c. Sketch the solution curve that corresponds to the initial condition \(y(0)=1\). $$y^{\prime}(t)=y(y-3)$$
Chemical rate equations Let \(y(t)\) be the concentration of a substance in a chemical reaction (typical units are moles/liter). The change in the concentration, under appropriate conditions, is modeled by the equation \(\frac{d y}{d t}=-k y^{n},\) for \(t \geq 0,\) where \(k>0\) is a rate constant and the positive integer \(n\) is the order of the reaction. a. Show that for a first-order reaction \((n=1),\) the concentration obeys an exponential decay law. b. Solve the initial value problem for a second-order reaction \((n=2)\) assuming \(y(0)=y_{0}\). c. Graph the concentration for a first-order and second-order reaction with \(k=0.1\) and \(y_{0}=1\).
Determine whether the following statements are true and give an explanation or counterexample. a. The general solution of \(y^{\prime}(t)=2 y-18\) is \(y(t)=2 e^{2 t}+9\) b. If \(k>0\) and \(b>0,\) then \(y(t)=0\) is never a solution of \(y^{\prime}(t)=k y-b\) c. The equation \(y^{\prime}(t)=t y(t)+3\) is separable and can be solved using the methods of this section. d. According to Newton's Law of Cooling, the temperature of a hot object will reach the ambient temperature after a finite amount of time.
What do you think about this solution?
We value your feedback to improve our textbook solutions.