Chapter 9: Problem 39
Analytical solution of the predator-prey equations The solution of the predator-prey equations $$x^{\prime}(t)=-a x+b x y, y^{\prime}(t)=c y-d x y$$ can be viewed as parametric equations that describe the solution curves. Assume \(a, b, c,\) and \(d\) are positive constants and consider solutions in the first quadrant. a. Recalling that \(\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)},\) divide the first equation by the second equation to obtain a separable differential equation in terms of \(x\) and \(y\) b. Show that the general solution can be written in the implicit form \(e^{d x+b y}=C x^{r} y^{a},\) where \(C\) is an arbitrary constant. c. Let \(a=0.8, b=0.4, c=0.9,\) and \(d=0.3 .\) Plot the solution curves for \(C=1.5,2,\) and \(2.5,\) and confirm that they are, in fact, closed curves. Use the graphing window \([0,9] \times[0,9]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.