Chapter 9: Problem 36
A physiological model A common assumption in modeling drug assimilation is that the blood volume in a person is a single compartment that behaves like a stirred tank. Suppose the blood volume is a four-liter tank that initially has a zero concentration of a particular drug. At time \(t=0,\) an intravenous line is inserted into a vein (into the tank) that carries a drug solution with a concentration of \(500 \mathrm{mg} / \mathrm{L} .\) The inflow rate is \(0.06 \mathrm{L} / \mathrm{min} .\) Assume the drug is quickly mixed thoroughly in the blood and that the volume of blood remains constant. a. Write an initial value problem that models the mass of the drug in the blood, for \(t \geq 0\) b. Solve the initial value problem, and graph both the mass of the drug and the concentration of the drug. c. What is the steady-state mass of the drug in the blood? d. After how many minutes does the drug mass reach \(90 \%\) of its steady-state level?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.