Chapter 9: Problem 35
Properties of stirred tank solutions a. Show that for general positive values of \(R, V, C_{i},\) and \(m_{0},\) the solution of the initial value problem $$m^{\prime}(t)=-\frac{R}{V} m(t)+C_{i} R, \quad m(0)=m_{0}$$is \(m(t)=\left(m_{0}-C_{i} V\right) e^{-R t / V}+C_{i} V\) b. Verify that \(m(0)=m_{0}\) c. Evaluate \(\lim _{t \rightarrow \infty} m(t)\) and give a physical interpretation of the result. d. Suppose \(m_{0}\) and \(V\) are fixed. Describe the effect of increasing \(R\) on the graph of the solution.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.