Chapter 8: Problem 87
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational function using the substitution \(u=\tan (x / 2)\) or, equivalently, \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ Verify relation \(A\) by differentiating \(x=2 \tan ^{-1} u .\) Verify relations \(B\) and \(C\) using a right-triangle diagram and the double-angle formulas $$\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2} \quad \text { and } \quad \cos x=2 \cos ^{2} \frac{x}{2}-1$$.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.