Chapter 8: Problem 82
A family of exponentials The curves \(y=x e^{-a x}\) are shown in the figure for \(a\)=1,2, and 3. Figure cannot copy a. Find the area of the region bounded by \(y=x e^{-x}\) and the \(x\) -axis on the interval [0,4] b. Find the area of the region bounded by \(y=x e^{-a x}\) and the \(x\) -axis on the interval \([0,4],\) where \(a>0.\) c. Find the area of the region bounded by \(y=x e^{-a x}\) and the \(x\) -axis on the interval \([0, b] .\) Because this area depends on \(a\) and \(b,\) we call it \(A(a, b)\). d. Use part (c) to show that \(A(1, \ln b)=4 A\left(2, \frac{\ln b}{2}\right)\). e. Does this pattern continue? Is it true that \(A(1, \ln b)=a^{2} A(a,(\ln b) / a) ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.