Chapter 8: Problem 53
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. Suppose \(\int_{a}^{b} f(x) d x\) is approximated with Simpson's Rule using \(n=18\) subintervals, where \(\left|f^{(4)}(x)\right| \leq 1\) on \([a, b]\) The absolute error \(E_{S}\) in approximating the integral satisfies \(E_{s} \leq \frac{(\Delta x)^{5}}{10}\) 1\. If the number of subintervals used in the Midpoint Rule is increased by a factor of \(3,\) the error is expected to decrease by a factor of \(8 .\) c. If the number of subintervals used in the Trapezoid Rule is increased by a factor of \(4,\) the error is expected to decrease by a factor of \(16 .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.