Chapter 8: Problem 3
Explain geometrically how the Trapezoid Rule is used to approximate a definite integral.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 8: Problem 3
Explain geometrically how the Trapezoid Rule is used to approximate a definite integral.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals. $$\int \frac{x^{4}+2 x^{3}+5 x^{2}+2 x+1}{x^{5}+2 x^{3}+x} d x$$
Another Simpson's Rule formula Another Simpson's Rule formula is \(S(2 n)=\frac{2 M(n)+T(n)}{3},\) for \(n \geq 1 .\) Use this rule to estimate \(\int_{1}^{e} \frac{1}{x} d x\) using \(n=10\) subintervals.
Work Let \(R\) be the region in the first quadrant bounded by the curve \(y=\sec ^{-1} x\) and the line \(y=\pi / 3 .\) Suppose a tank that is full of water has the shape of a solid of revolution obtained by revolving region \(R\) about the \(y\) -axis. How much work is required to pump all the water to the top of the tank? Assume \(x\) and \(y\) are in meters.
Three cars, \(A, B,\) and \(C,\) start from rest and accelerate along a line according to the following velocity functions: $$v_{A}(t)=\frac{88 t}{t+1}, \quad v_{B}(t)=\frac{88 t^{2}}{(t+1)^{2}}, \quad \text { and } \quad v_{C}(t)=\frac{88 t^{2}}{t^{2}+1}$$ a. Which car travels farthest on the interval \(0 \leq t \leq 1 ?\) b. Which car travels farthest on the interval \(0 \leq t \leq 5 ?\) c. Find the position functions for each car assuming each car starts at the origin. d. Which car ultimately gains the lead and remains in front?
Evaluate \(\int_{0}^{\pi / 4} \ln (1+\tan x) d x\) using the following steps. a. If \(f\) is integrable on \([0, b],\) use substitution to show that $$\int_{0}^{b} f(x) d x=\int_{0}^{b / 2}(f(x)+f(b-x)) d x$$ b. Use part (a) and the identity tan \((\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}\) to evaluate \(\int_{0}^{\pi / 4} \ln (1+\tan x) d x\) (Source: The College Mathematics Journal, \(33,4,\) Sep 2004 )
What do you think about this solution?
We value your feedback to improve our textbook solutions.