Chapter 8: Problem 112
An important function in statistics is the Gaussian (or normal distribution, or bell-shaped curve), \(f(x)=e^{-a x^{2}}\) a. Graph the Gaussian for \(a=0.5,1,\) and 2. b. Given that \(\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}},\) compute the area under the curves in part (a). c. Complete the square to evaluate \(\int_{-\infty}^{\infty} e^{-\left(a x^{2}+b x+c\right)} d x,\) where \(a>0, b,\) and \(c\) are real numbers.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.