Chapter 8: Problem 109
The work required to launch an object from the surface of Earth to outer space is given by \(W=\int_{R}^{\infty} F(x) d x,\) where \(R=6370 \mathrm{km}\) is the approximate radius of Earth, \(F(x)=\frac{G M m}{x^{2}}\) is the gravitational force between Earth and the object, \(G\) is the gravitational constant, \(M\) is the mass of Earth, \(m\) is the mass of the object, and \(G M=4 \times 10^{14} \mathrm{m}^{3} / \mathrm{s}^{2}\) a. Find the work required to launch an object in terms of \(m\). b. What escape velocity \(v_{e}\) is required to give the object a kinetic energy \(\frac{1}{2} m v_{e}^{2}\) equal to \(W ?\) c. The French scientist Laplace anticipated the existence of black holes in the 18 th century with the following argument: If a body has an escape velocity that equals or exceeds the speed of light, \(c=300,000 \mathrm{km} / \mathrm{s},\) then light cannot escape the body and it cannot be seen. Show that such a body has a radius \(R \leq 2 G M / c^{2} .\) For Earth to be a black hole, what would its radius need to be?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.