Chapter 8: Problem 101
Show that \(\int_{0}^{\infty} \frac{\sqrt{x} \ln x}{(1+x)^{2}} d x=\pi\) in the following steps. a. Integrate by parts with \(u=\sqrt{x} \ln x\). b. Change variables by letting \(y=1 / x\). c. Show that \(\int_{0}^{1} \frac{\ln x}{\sqrt{x}(1+x)} d x=-\int_{1}^{\infty} \frac{\ln x}{\sqrt{x}(1+x)} d x\) (and that both integrals converge). Conclude that \(\int_{0}^{\infty} \frac{\ln x}{\sqrt{x}(1+x)} d x=0\). d. Evaluate the remaining integral using the change of variables \(z=\sqrt{x}\). (Source: Mathematics Magazine \(59,1,\) Feb 1986 )
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.