Chapter 8: Problem 100
Let \(R\) be the region between the curves \(y=e^{-c x}\) and \(y=-e^{-c x}\) on the interval \([a, \infty),\) where \(a \geq 0\) and \(c>0 .\) The center of mass of \(R\) is located at \((\bar{x}, 0)\) where \(\bar{x}=\frac{\int_{a}^{\infty} x e^{-c x} d x}{\int_{a}^{\infty} e^{-c x} d x} .\) (The profile of the Eiffel Tower is modeled by the two exponential curves; see the Guided Project The exponential Eiffel Tower. ) a. For \(a=0\) and \(c=2,\) sketch the curves that define \(R\) and find the center of mass of \(R .\) Indicate the location of the center of mass. b. With \(a=0\) and \(c=2,\) find equations of the lines tangent to the curves at the points corresponding to \(x=0\) c. Show that the tangent lines intersect at the center of mass. d. Show that this same property holds for any \(a \geq 0\) and any \(c>0 ;\) that is, the tangent lines to the curves \(y=\pm e^{-c x}\) at \(x=a\) intersect at the center of mass of \(R\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.