Use the following argument to show that \(\lim _{x \rightarrow \infty} \ln
x=\infty\) and \(\lim _{x \rightarrow 0^{+}} \ln x=-\infty\).
a. Make a sketch of the function \(f(x)=1 / x\) on the interval \([1,2] .\)
Explain why the area of the region bounded by \(y=f(x)\) and the \(x\) -axis on
[1,2] is \(\ln 2\).
b. Construct a rectangle over the interval [1,2] with height \(1 / 2\) Explain
why \(\ln 2>1 / 2\).
c. Show that \(\ln 2^{n}>n / 2\) and \(\ln 2^{-n}<-n / 2\).
d. Conclude that \(\lim _{x \rightarrow \infty} \ln x=\infty\) and \(\lim _{x
\rightarrow 0^{+}} \ln x=-\infty\).