Chapter 7: Problem 50
Acceleration, velocity, position Suppose the acceleration of an object moving along a line is given by \(a(t)=-k v(t),\) where \(k\) is a positive constant and \(v\) is the object's velocity. Assume the initial velocity and position are given by \(v(0)=10\) and \(s(0)=0\) respectively. a. Use \(a(t)=v^{\prime}(t)\) to find the velocity of the object as a function of time. L. Use \(v(t)=s^{\prime}(t)\) to find the position of the object as a function of time. c. Use the fact that \(\frac{d v}{d t}=\frac{d v}{d s} \frac{d s}{d t}\) (by the Chain Rule) to find the velocity as a function of position.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.