Chapter 7: Problem 5
How are the rate constant and the doubling time related?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 7: Problem 5
How are the rate constant and the doubling time related?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeDesigning exponential decay functions Devise an exponential decay function that fits the following data; then answer the accompanying questions. Be sure to identify the reference point \((t=0)\) and units of time. China's population China's one-child policy was implemented with a goal of reducing China's population to 700 million by 2050 (from 1.2 billion in 2000 ). Suppose China's population then declined at a rate of \(0.5 \% / \mathrm{yr}\). Would this rate of decline be sufficient to meat the goal?
Chemotherapy In an experimental study at Dartmouth College, mice with tumors were treated with the chemotherapeutic drug Cisplatin. Before treatment, the tumors consisted entirely of clonogenic cells that divide rapidly, causing the tumors to double in size every 2.9 days. Immediately after treatment, \(99 \%\) of the cells in the tumor became quiescent cells which do not divide and lose \(50 \%\) of their volume every 5.7 days. For a particular mouse, assume the tumor size is \(0.5 \mathrm{cm}^{3}\) at the time of treatment. a. Find an exponential decay function \(V_{1}(t)\) that equals the total volume of the quiescent cells in the tumor \(t\) days after treatment. b. Find an exponential growth function \(V_{2}(t)\) that equals the total volume of the clonogenic cells in the tumor \(t\) days after treatment. c. Use parts (a) and (b) to find a function \(V(t)\) that equals the volume of the tumor \(t\) days after treatment. d. Plot a graph of \(V(t)\) for \(0 \leq t \leq 15 .\) What happens to the size of the tumor, assuming there are no follow-up treatments with Cisplatin? e. In cases where more than one chemotherapy treatment is required, it is often best to give a second treatment just before the tumor starts growing again. For the mice in this exercise. when should the second treatment be given?
Differential equations Hyperbolic functions are useful in solving differential equations (Chapter 9 ). Show that the functions \(y=A \sinh k x\) and \(y=B \cosh k x,\) where \(A, B,\) and \(k\) are constants, satisfy the equation \(y^{\prime \prime}(x)-k^{2} y(x)=0\)
Catenary arch The portion of the curve \(y=\frac{17}{15}-\cosh x\) that lies above the \(x\) -axis forms a catenary arch. Find the average height of the arch above the \(x\) -axis.
Evaluate the following integrals. Include absolute values only when needed. $$\int \frac{\sin (\ln x)}{4 x} d x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.