Chapter 7: Problem 4
Explain the meaning of half-life.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 7: Problem 4
Explain the meaning of half-life.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freePoints of intersection and area. a. Sketch the graphs of the functions \(f\) and \(g\) and find the \(x\) -coordinate of the points at which they intersect. b. Compute the area of the region described. \(f(x)=\operatorname{sech} x, g(x)=\tanh x ;\) the region bounded by the graphs of \(f, g,\) and the \(y\) -axis
Surface area of a catenoid When the catenary \(y=a \cosh \frac{x}{a}\) is revolved about the \(x\) -axis, it sweeps out a surface of revolution called a catenoid. Find the area of the surface generated when \(y=\cosh x\) on \([-\ln 2, \ln 2]\) is rotated about the \(x\) -axis.
Assume \(y>0\) is fixed and \(x>0 .\) Show that \(\frac{d}{d x}(\ln x y)=\frac{d}{d x}(\ln x) .\) Recall that if two functions have the same derivative, then they differ by an additive constant. Set \(x=1\) to evaluate the constant and prove that \(\ln x y=\ln x+\ln y\).
Integral proof Prove the formula \(\int\) coth \(x \, d x=\ln |\sinh x|+C\) of Theorem 7.6.
Use the following argument to show that \(\lim _{x \rightarrow \infty} \ln x=\infty\) and \(\lim _{x \rightarrow 0^{+}} \ln x=-\infty\). a. Make a sketch of the function \(f(x)=1 / x\) on the interval \([1,2] .\) Explain why the area of the region bounded by \(y=f(x)\) and the \(x\) -axis on [1,2] is \(\ln 2\). b. Construct a rectangle over the interval [1,2] with height \(1 / 2\) Explain why \(\ln 2>1 / 2\). c. Show that \(\ln 2^{n}>n / 2\) and \(\ln 2^{-n}<-n / 2\). d. Conclude that \(\lim _{x \rightarrow \infty} \ln x=\infty\) and \(\lim _{x \rightarrow 0^{+}} \ln x=-\infty\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.